
White Paper: A Tour of Modern AI and Its Commercial Applications

A Tour of Modern AI
and Its Commercial
Applications
Insightful intel of what artificial intelligence is
about and its practical reality as a game-changer.

Jon Lederman, VP of Artificial Intelligence, Rajant Corporation

White Paper: A Tour of Modern AI and Its Commercial Applications 2

Table of Contents

Introduction ..3

A Brief Digression on the History of AI4

A Taxonomy of AI .. 5

Intelligence is in the Eye of the Beholder 5

Machine Learning .. 5

Supervised Learning .. 6

Unsupervised Learning ... 6

Reinforcement Learning ...7

Data...Data...Data .. 8

Linear Regression—the Hello World of
Supervised Machine Learning .. 9

Higher Order Basis Functions ...10

Model and Observation .. 11

Maximum Likelihood, Least Squares,
and Loss Functions .. 12

Bias and Variance... 13

Logistic Regression—the Art of Classification 14

From Logistic Regression to Deep
Neural Networks ... 16

Representational Learning ... 17

Gradient Descent, Backpropagation,
Convexity and All That ... 19

Our First Neural Network ...20

Finally ...22

White Paper: A Tour of Modern AI and Its Commercial Applications 3

Artificial Intelligence (AI) is making huge headlines around the world. But, what is the
practical reality of AI as a game-changer in various industries for solving real-world problems?
Before tackling these questions, it’s useful to gain some insight into what AI is all about.

Introduction

This white paper will begin by embarking on a tour of
contemporary AI and how it is accomplished. Although
AI and machine learning (ML) can be a highly technical
subject involving lots of math and statistics, the aim here
is to present these topics in a non-technical way, but at
the same time provide a reasonable amount of breadth,
depth, and rigor. While there will be some mathematical
notation, this can be safely ignored if so desired.1

This first installment will present an overview of some of
the key ideas of AI and ML at a high level. We will move
rapidly through key aspects of the theory and by the end
of this installment walk through building a simple deep
neural network to recognize handwritten digits. Don’t
worry if some of the ideas presented here are not entirely
clear, as we won’t have time to delve into all of the details.
In subsequent installments, we will flesh out the key
ideas presented here in greater detail. Upon establishing
a solid foundation of the mechanics of AI and machine
learning, later installments will examine the promise of AI
and specifically how the various incarnations of AI can be
brought to bear in industry and commercial applications to
solve hard problems in the world. More detailed aspects
of the content will be presented later in this series of
white papers on artificial intelligence.

As we will see, the rudiments of AI and ML arise from
probability and statistics. And while there are many ways
to interpret how AI works, in fact, the “how” remains an
open question that has become a focal area of research.
Answers to this question may touch on some advanced
topics such as convex function theory, Bayesian

inference, information theory, and even aspects of
statistical quantum mechanics such as spin glasses.
These questions are not merely academic, for they
underscore crucial elements of the successful practice
of AI. Indeed, it is a vibrant field! But we needn’t
complicate the discussion for now as we will get to all
of that in due course.

We will approach this discussion by building up our
understanding of AI from first principles. We will
begin with linear regression, which may be thought
of as the “Hello World” of AI. From there, we will turn
to the classification problem and delve into an area
called logistic regression, which is all about teaching
a computer to classify an input as belonging to one
class or another. If you think about it, classification is a
vital part of the foundations of exhibited intelligence.
An agent that can recognize and distinguish different
entities in the world may be said to present some basic
modicum of intelligence.

Logistic regression will serve as a foundation for
understanding neural networks and deep learning,
which is one of the most popular techniques today
in supervised learning. Along the way, we hope to
highlight the essential aspects of these techniques. For
example, we will learn the two most important aspects
of neural networks and deep learning that has enabled
this technique to be so successful in areas such as
image classification, natural language processing,
speech recognition, and speech synthesis.

1 The key areas of math that are helpful to understand AI are in no particular order, probability and statistics, linear algebra and basic univariate and multivariate calculus. However,
reasonable intuition and understanding of AI concepts and the practice of building AI models is certainly achievable without much or any math. From a practitioner’s perspective,
linear algebra is perhaps the most important area to have some familiarity with in order to make headway.

White Paper: A Tour of Modern AI and Its Commercial Applications 4

It’s worth taking a brief detour into the history of AI as it
is not only interesting but informative as to why modern
AI techniques have enjoyed such success. Like many
technical fields, it is riddled with dead ends, loose threads,
and a trajectory characterized more like an aimless sailing
excursion in shifting winds than a rocket launch.

One myth that underlies much of the popular discussion
of AI on the Web is that it’s new. It’s not—at least the basic
theoretical knowledge for its execution isn’t. The success
of AI as of late is a byproduct of decades-old theoretical
results and modern cheap computer hardware that has
emerged over the last ten years or so. The roots of
machine learning and AI can be traced back at least to the
1940s, and its evolution, like many fields, is characterized
by a pattern of fits and starts.

Perhaps the most realistic time frame to consider in
tracking the birth of modern AI is the late 1950s and early
1960s and the discovery of the perceptron by Rosenblatt.
The perceptron is a learning model, which bears some
resemblance to artificial neurons at the heart of deep
neural networks today—with some key differences.
However, progress in the field was stymied in the late ’60s
largely due to some theoretical results published by Minksy
(MIT) et al. that showed certain fundamental limitations
of perceptrons. The Minksy work was misinterpreted as
showing that neural networks were limited to linearly
separable problems, which unfortunately killed much of the
research in the area until the mid-1980s.

The theory of backpropagation, which arguably is the
bread and butter of deep neural network training and
which we shall explore in great detail later, was derived in
the 1960s and implemented to run on a digital computer in
1970 (by Linnainmaa) albeit not for neural network training.
In 1974, the idea of applying backpropagation to neural
networks was proposed by Paul Werbos in his doctoral
dissertation.

The field was resurrected to some extent in the mid-
1980s when Geoffrey Hinton (a “Godfather of AI”,
pictured above) et al. rediscovered backpropagation
and, through experimentation, showed that it could
be applied to deep neural networks and utilized
to automatically generate internal representations
of features for learning. However, techniques for
carrying out training were limited by the computational
horsepower of the day. This remained largely true up
through the 2000s.

However, if backpropagation provided the kindling,
the emergence of affordable and more powerful GPUs
in recent years served as the spark for many of the
modern advances we’ve seen in AI and deep learning,
especially over the last ten years. Arguably, it was this
explosive combination of the theoretical underpinnings
of backpropagation and the access to fast parallel
computation via GPUs that set the AI field alight.

But, there’s more than this. To foreshadow a bit the
story of why modern AI has proved so successful,
there are two salient features at play. First, rather
than relying on hand-engineered features, modern
AI and deep learning models learn their features.
This, as we shall explore later, is the province of
representational learning, a subtle but brilliant kernel
of what makes AI tick. Second, deep neural networks
are inherently non-linear, but more importantly, can
learn non-linear representations without facing the
intractable limitations inherent in working with analytic
representations of non-linear mathematics. We shall
see that these two attributes—representational
learning and non-linearity—are the driving forces in
the remarkable power and success for which recent AI
initiatives have garnered attention.

Before delving into the details, a bit of nomenclature
is in order.

A Brief Digression on the History of Artificial Intelligence

White Paper: A Tour of Modern AI and Its Commercial Applications 5

A Taxonomy of AI
The terms AI, machine learning, deep learning, neural networks, and many
others are weaving their way into public consciousness. Often these terms are
used interchangeably. But, there are meaningful differences, which are
essential in understanding the potential for commercial AI applications.

Intelligence is in the Eye of the Beholder
The term “artificial intelligence” was coined by computer scientist John
McCarthy in 1956 who also developed the famous LISP programming language.
Although there is no universal definition of the term, a reasonable description
is any machine behavior that appears intelligent or displays what humans
would call intelligence. To this end, Alan Turing, subject of the famous film “The
Imitation Game”, devised a test called the Turing test to determine whether a
machine exhibits intelligent behavior.

Machine Learning
The term “machine learning” was coined in 1959 by computer scientist Arthur
Samuel. While “machine learning” does not have a precise formalized definition,
a working definition is algorithms that perform some type of pattern detection
typically accomplished using statistical techniques or statistical inference. There
is a divergence of opinion on whether “machine learning” itself is a subfield of
AI, and the history of both fields has taken many twists and turns and at various
points have intertwined.2

But, where is the “learning” in ML? In short, learning refers to a machine’s
ability to refine or improve its ability to perform a specific action. Learning
may be further classified as supervised learning, unsupervised learning and
reinforcement learning. Let’s explore these in turn.

2 In general, the AI camp has historically focused more on symbolic vs. statistical techniques. Indeed AI in its purest form focused on symbolic, knowledge representation and logical
inference and machine learning is predominantly concerned with pattern recognition primarily using statistical approaches. Indeed, machine learning might be aptly called statistical
inference.

White Paper: A Tour of Modern AI and Its Commercial Applications 6

Supervised Learning
Human beings often learn from example. For example,
they may learn what the word “red” means by observing
those objects in the world that have particular visual
characteristics are all called “red”. After observing many
examples, a person may arrive at a general understanding
of what “red” means. In short, there is a consensus on what
“red” means for which virtually everyone can agree and
which is codified in empirical examples in the world.

Supervised machine learning operates superficially in the
same way. During a training phase, an algorithm processes
a set of labeled training examples to perform a learning
algorithm. Each training example comprises an input
and an output and represents what is referred to as the
“ground truth”. The ground truth operates as an instructive
example gleaned empirically and represents a correct
mapping from one particular input to an associated output.
The product of the training phase is called the model and
generally comprises a set of abstract numbers (more on
this later), which are called the parameters of the model.
Once the training is completed, the model may be used to
perform inference or prediction (also called the test phase)
on examples that were not observed during training. The
hope is that the model is sufficiently general that it can
make inferences about examples it has never observed
previously.

In any case, for all practical purposes, the terms AI
and machine learning these days are used almost
interchangeably despite their historical differences.

However, supervised learning operates intrinsically
at the statistical level. The set of training examples
defines some probability distribution from which a
statistical model is learned (more on this later).

So, in short, a supervised learning algorithm analyzes
the training data (examples) and generates an
inferred function, which can be used for mapping
new examples. An optimal scenario will allow for the
algorithm to correctly determine the class labels for
unseen instances. This requires the learning algorithm
to generalize from the training data to unseen
situations in a “reasonable” way.

Neural networks and deep learning are two examples
of supervised learning techniques that have recently
received much attention and fanfare in the media.
We will explore neural networks and deep learning in
another white paper.

Unsupervised Learning
Although people often learn in a supervised way, in
most instances, learning occurs without any reference
to specific labels or examples. For example, a person
may abstract a general principle that may be applied
by analogy to many scenarios. And, this may happen
without any specific data indicating such a relationship.
In some sense, the brain is wired to learn. Principal
component analysis (“PCA”) and clustering are
examples of unsupervised learning that we will explore
later in this series.

3 The term “test” phase although used heavily in the literature is somewhat misleading. It’s really part of the training phase to evaluate how well the model generalizes and in fact
comprises. The hope is that the model is sufficiently general that it can reliably perform inference on inputs outside of the training set. We will therefore use the term inference or
prediction to distinguish from the training phase.
4 Whether models can generalize is an involved topic that relates to two types of conditions, underfitting and overfitting. This in turn relates to what is called the bias variance
tradeoff. We won’t explore these aspects in this white paper, but they are very important and will be examined in great detail later.

White Paper: A Tour of Modern AI and Its Commercial Applications 7

Reinforcement Learning

5 The estimated number of possible board configuration is 10¹²º in chess which is astronomical but Go has around 10¹⁷⁴. After the first two moves of a Chess game, there are 400
possible next moves. In Go, there are close to 130,000.

Reinforcement Learning (“RL”) and deep reinforcement learning are very hot
fields that are making their way into commercial applications. It is particularly
applicable to situations where an agent must interact with its environment such
as in robotics or autonomous driving. As a fun illustration of RL, it has been
applied to teach machines how to play classic arcade video games that can
decimate human opponents.

For those who are familiar with the astounding success of AlphaGo and
AlphaGoZero, deep reinforcement learning is the machine learning technique
behind that technology. AlphaGo and AlphaGoZero have received quite a bit of
publicity after defeating top-ranked professional Go players in the world; a feat
considered the holy grail for employing AI to strategic gaming.5

A hallmark of reinforcement learning that distinguishes it from other types
of learning is that it uses training information that evaluates actions taken
rather than instructs by giving correct actions. Evaluative feedback depends
on the action taken typically in terms of some reward based on the action.
Supervised learning, on the other hand, relies on instructive feedback, which
is characterized by a correct action to take independent of the action actually
taken. In short, evaluative feedback, which is used to train reinforcement
learning systems, depends on the action taken. In contrast, instructive feedback,
which is used to train supervised learning systems, is independent of the action
taken.

White Paper: A Tour of Modern AI and Its Commercial Applications 8

Before diving into our first high-level topic of supervised learning, we will briefly
discuss the fuel of ML and AI - data. With machine learning, there is no such
thing as too much data. However, no data, too little data, or lack of good data
can be a non-starter for any machine learning initiative.

As food for thought, we highlight two toy datasets that will be useful to keep in
mind when reading this material. The first by Bishop and James relates to the
non-invasive measurement of the proportions of oil, water, and gas in the North
Sea oil transfer pipelines.6

The second is the MNIST dataset of handwritten digits. This dataset consists of
handwritten digits. We seek to train a machine to recognize these handwritten
digits. Here is an example drawn from the dataset:

Data...Data...Data

6 This image was taken from Pattern Recognition and Machine Learning by Christopher M. Bishop (1993).

Stratified

Homogeneous

Annular

Oil

Water

Gas

Mix

White Paper: A Tour of Modern AI and Its Commercial Applications 9

Linear Regression—the Hello World of Supervised Machine Learning
Anyone who has taken a basic statistics class has already
had a taste of the foundations of machine learning in the
form of linear regression. In some sense, linear regression
can be viewed as the most basic form of supervised
learning. Linear regression is a technique for inferring a
linear relationship or mapping between two sets of data,
an independent variable (input) and a dependent variable
(output). The input variables are often described as the
features, while the output variable is often called the
target.

A good toy problem to which linear regression might be
applied is predicting housing prices. Suppose we desire
to predict the price (target) of a particular house based on
various features, including such things as location, square
footage, number of bedrooms, etc. A reasonable model
is to assume that the price of the house is a function of
some linear combination of the features. In other words,
let’s assume our target (the housing price) to be modeled
as a linear function of three features—location, square
footage, and number of bedrooms:

price = w1 * location + w2 * footage + w1 * bedrooms

The variables w1 w2 and w3 are called weights. These
weights express the relative importance of each of the
features in predicting a housing price.

But how does machine learning fit into this picture? In
short, our first example of machine learning is learning

these weights based upon some observations. Let’s
take the housing prices example, generalize it a bit,
and gain a glimpse of what this learning process
looks like. Let’s generalize our problem from three
features to an arbitrary number of input features. The
simplest model for linear7 regression is simply a linear
combination of input features as follows:

f (x,w) = w0
 + x1w1 + x2w2 + ... + xnwn

8

The relationship can be expressed compactly in vector
form as:

f (x) = wTx

where w is a vector of parameters and x is a vector of
input features9. Technically, the parameters are a set of
weights and a bias parameter. The meaning of these
terms will be explored in subsequent papers.

Let’s unpack these relationships:

● x is a vector holding the input features to be
 processed by the linear regression model.

● f (x) is the output of the linear regression model. It is
 the number we are trying to predict.

● w is a vector of parameters comprising weights and
 a bias.

7 The term “linear” here can be intuitively thought of in this context as lying on a line. Of course, in this example, we are in n dimensions and thus the points lie on a hyperplane of
dimension N-1 in N dimensions. The term linear though has a more formal mathematical definition that makes linearity very powerful, which we won’t discuss here, but perhaps will
do so later.
8 Note a key point is that the model is linear in the parameters w. Later, we will find we can model quadratic or higher terms by choosing a set of basis functions. However, these
models will still be linear in the parameters.
9 Note, we can set the input feature x_0 = 1 so that w_0 can be conveniently included in this vector.

White Paper: A Tour of Modern AI and Its Commercial Applications 10

Higher Order Basis Functions
So far, we’ve looked at linear regression on the inputs
themselves. This amounts to assuming ambient basis
functions which are the standard Euclidean basis
vectors:

ei = δij

This limits the expressiveness of the model to capture
higher-order features. One way to address this is to
project the input into a higher dimensional space using
a set of basis functions. For example, the scalar input x
could be projected onto the powers of x as follows:

Φ(x) - (1, x, x2, x3, ...)T

The model is still linear in the parameters w so long as
the basis functions are fixed and, therefore, analytically
tractable.

j

White Paper: A Tour of Modern AI and Its Commercial Applications 11

Model and Observation

Let’s assume now that we have some data (our first
dataset) of housing prices and a corresponding vector of
features associated with that housing price. We can call
this set of data our observations. But, more specifically,
it is labeled training data in that we know the actual or
correct or instructive answer for the housing price based
on the input features. This is often referred to as the
ground truth. We will see how these training examples
serve as instructive feedback to train our model (in our
case the determination of the parameters w0 w1 w2 ... wn).

However, before we consider learning, let’s consider
the reality of how we obtain these observations in the
first place. The plot below shows an example set of
observations for a linear regression model in which we
have a single input feature along the x-axis. The target
value (output) is along the y-axis. You could imagine this
as our housing price predictor in which we considered
only a single input feature, which in this case might be (for
example) the income of housing buyers (in $1000s) along
the x-axis and target price (in $1000s) along the y-axis.
This isn’t a particularly realistic or useful example, but it’s
fine for instruction purposes.

Note something interesting about the plot above. The
data points don’t all lie on a straight line! Why is this? The
answer is that each observation will be corrupted and
thereby perturbed by some noise. We use the term noise
to generically capture any error in our observations. It

may stem from measurement error, physical noise in
a measurement apparatus, human error, and a host of
other sources that introduce some randomness into
the mix. Thereby, we can model this noise as a random
variable ε. As we will learn later, the noise term ε will
be characterized by a probability density function
(typically Gaussian) and temporal correlation with noise
at other time instants. Usually, we assume the noise is
uncorrelated across time, and we typically model this
noise as a Gaussian random variable characterized
by its mean and variance. With this new insight, our
observations y can be expressed as follows:

y = f (x) + ε

However, we are interested in f (x), and specifically,
the parameters w. In essence, the linear regression
problem boils down to the problem of finding the
optimal parameters w for a linear model f (x) based
upon observations that have been perturbed by some
random noise ε.

How do we find these parameters w? This process is
what we call learning. And we shall see that for linear
regression, there is a myriad of techniques for finding
the parameters, including a closed-form solution
called maximum likelihood least squares, via Bayesian
methods and optimization methods such as gradient
descent. While we shall explore all of these at some
level, gradient descent is the most relevant for our
discussion as it is more or less the only game in town
when considering non-linear models such as deep
neural networks. We will, therefore spend considerable
time exploring how it works (but not in this first paper).

For now, let’s simply show the results for the closed-
form maximum likelihood least squares closed solution,
which is possible because the problem is linear (this
result will be derived in a later paper).

20 40 60 80 100

100

80

60

40

20

White Paper: A Tour of Modern AI and Its Commercial Applications 12

Suppose we have a linear regression model and wish to
evaluate how well it performs. One straightforward way
to do this is to compare its predictions with the ground
truth—our observations. Of course, our observations are
corrupted by noise, but that’s the whole point. We wish to
find the model that minimizes these errors in some way.

We can define what is called the expected loss as follows:

E[L] = ∫ ∫ L(t, f (x))p(x, t)dx dt

Here, t = y (x) for notational convenience. The function L
is called the loss function. A first-order function won’t do
as we might expect 0 if the error is distributed uniformly
around 0. So, instead, typically a second order loss
function is defined:

L(t, f (x)) = (t — f(x))2

f(x) is the estimate for the model, i.e., the set of
parameters that best estimate the true model. In other
words, the best-fit line in the plot above represents the
parameters for f (x) that minimize the total loss function
overall observations.

Maximum Likelihood, Least Squares, and Loss Functions

Starting with the likelihood probability distribution:

p(y|X, w, β)

We can then find the extremum (maximum values) for
this probability distribution by taking the gradient with
respect to the parameters w. We will see later that
this maximization is equivalent to minimizing an error
or cost function, which is typically a quadratic function
of the estimated and target values for the model. This
method is also referred to as the least-squares solution.
After some manipulation, we will find:

w = (ΦTΦ)—1 ΦT y

Where Φ is a matrix of the data set vectors, which may
be mapped to a higher dimensional space using a set
of non-linear basis vectors (more on this later).

Thus, the line in the above plot for a simple 1-D
problem, represents the maximum likelihood least
squares for the dataset shown—i.e., it is the best fit for
the data set shown.

The image below sums up much of what we’ve
discussed so far re: linear regression.

^

^

^

^

White Paper: A Tour of Modern AI and Its Commercial Applications 13

Bias and Variance
Before moving on, it is essential to discuss a very important
topic that will continue to play a major theme in our AI and ML
investigations. The topic is overfitting and underfitting. The
capacity of a model refers to its ability to fit a wide variety of
functions. Models with low capacity may fail to fit the training
set resulting in a situation called underfitting. Models with
high capacity can overfit by learning properties of the test set
that are undesirable such as noise.

The capacity of a model is determined by the number of
parameters in relation to the dataset to be modeled. An
overfitted model comprises more parameters than are
justified by the data. Conversely, underfitting occurs when the
number of parameters is insufficient to capture the data being
modeled. An example would be attempting to fit a linear
model to non-linear data.

We will learn later that overfitting is an artifact of maximum
likelihood estimation and does not arise in Bayesian
approaches. From a frequentist perspective, a relation called
the bias-variance tradeoff arises. We won’t explore it in any
depth here. However, we will write down the equations that
define this relationship and discuss their qualitative meaning.
Later, we will derive this relation. Here is the bias/variance
tradeoff:

ED[(y — f(x; D))2] = (BiasD[f(x; D)])2 + VarD [f(x; D)] + σ2

where

BiasD[f(x; D)] = ED[f(x; D)] — f (x)

VarD[f(x; D)] = ED[f(x; D)2] — ED[f(x; D)]2

σ2 is the squared variance of the noise ε.

The squared bias, represents the extent to which the
average prediction over all datasets differs from the desired
regression function.

The variance measures the extent to which the solutions for
individual data sets vary around their average. Hence, this
measures the extent to which the function y(x; D) is sensitive
to the particular choice of data set.

The “tradeoff” relates to the fact that models with a lower bias
have a higher variance and vice versa.

^ ^ ^

^ ^

^ ^ ^

White Paper: A Tour of Modern AI and Its Commercial Applications 14

Logistic Regression—the Art of Classification
We’ve seen that linear regression is a very powerful
technique for modeling relationships between input
features and inference such as, for example, the
dependence of housing prices upon various variables
such as location, square footage, number of bedrooms,
etc. While linear regression is great for predicting the
value of a function based upon a set of input features,
what if we wish to predict whether some entity in the
world belongs to a particular class or type?

For example, suppose we have a set of photos of dogs
and wish to build a model to predict the breed of dog
from a photo. In this case, we may have a range of
classes such as, “German Shepard”, “Labrador”, “Poodle”,
etc. The input to our model might be a digital image
comprising individual pixels, and the output would be a
variable indicating the particular dog breed in the photo.
For example, perhaps using our example “German
Shepard” is assigned to the class 1, “Labrador” is assigned
to the class 2 and “Poodle” is assigned to the class 3. In
other words, we wish to build a model that can learn how
to distinguish these different breeds of dogs based only
upon an input photograph.

Logistic regression is a statistical technique to model the
probability of an input belonging to a particular class.
While in linear regression, the model prediction f(x) was a
linear function of the input parameters w:

f(x) = wTx

In logistic regression, we seek to predict the probability
of an input belonging to a particular class. Therefore, our

output values range from 0-1. In other words, the output
of our model is in fact a probability. In order to achieve
this, we can build off the linear regression model by
simply wrapping that model in a non-linear function with
range 0-1 like so10:

f(x) = g(wTx)

This non-linear function g is often referred to as an
activation function of which there are several commonly
used variants, including the sigmoid function,
hyperbolic tangent, and ReLu (“Rectified Linear Unit”).
We will explore these different activation functions later.
For now, the sigmoid function is expressed as:

g(x) =

Here’s what it looks like:

Then, we will see later that the activation function is
essential to the non-linear modeling characteristic of

10 Sometimes people refer to this activation as a “squashing function” as it does just that. It squashes the range to be between 0 and 1.

1 + e—x

1 _______

-10 -5 5 10

1.0

0.8

0.6

0.4

0.2

White Paper: A Tour of Modern AI and Its Commercial Applications 15

deep neural networks, which among other things, makes
them so powerful.

The sigmoid function is a cumulative distribution function
(“CDF”). The associated probability distribution function
(“PDF”) may be found by taking its derivative and looks
like this:

with analytic form:

f (x) =

Since we now know how to model our classification
problem as a probability, we would like our machine
learning algorithm to generate a prediction:

p(Ck|x)

This is the conditional probability of class k given x. In
other words, if the input is k, what is the probability that it
belongs to class k.

Here is an example of a data set drawn from a probability
distribution to which a classifier has been applied.

You may wonder what type of loss function we might
employ for logistic regression. Typically, classifier
networks utilize something called cross-entropy loss.
The cross-entropy effectively measures the “distance”
between two probability distributions. This makes
sense, as our output is indeed a probability distribution.
In other words, cross-entropy loss measures the
distance between the probability distribution of our
training data and the probability distribution generated
by our network predictions. For a binary classifier, the
cross-entropy loss can be expressed as:

H(p,q) = — ∑pi log qi = —y log y — (1 — y) log (1 — y)

Finally, we wish our output to in fact resemble a
probability distribution. How is this accomplished? For
this, an activation function called the softmax activation
function is employed. It effectively squashes our
arbitrary output into a card-carrying PDF.

-10 -5 5 10

0.25

0.20

0.15

0.10

0.05

(ex/2 + e—x/2)2

e—x __________

Logistic Regression

4

2

0

-2

-4

-4 -2 -0 -2 -4

i

^ ^

White Paper: A Tour of Modern AI and Its Commercial Applications 16

From Logistic Regression to Deep Neural Networks
We will soon explore the deep learning “zoo” housing
many species including feedforward neural networks,
convolutional neural networks, recurrent neural networks,
LSTMs, GRUs, autoencoders and many others. Each
species plays a unique role in attacking particular
problems and applications, but the development of a
model architecture is at least as much art as it is science.

A logistic neuron is the building block of deep neural
networks. Here it is in diagrammatic form:

z = w0x0 + w1x1 + w2x2 + ... + wnxn

a = σ (z)

σ (z) =

There’s nothing new here. The logistic neuron simply
encapsulates logistic regression in a single unit. And, in
some sense, a deep neural network is constructed by
weaving together many layers of these logistic neurons.

Here’s the basic architecture of a deep neural network
called a feedforward neural network, which couples
together many logistic neurons arranged in layers. With
this approach, we end up with an architecture called a
feedforward deep neural network.

The feedforward network consists of an input layer,
an arbitrary number of hidden layers, and an output
layer. Note that each layer is typically followed by a
non-linear activation function, such as the sigmoid we
discussed earlier. These activation functions are what
imbues non-linearity into our network, which is so
highly desired. Indeed, the real world, which we seek
to model is highly non-linear.

The hidden layers are hidden in the sense that they
and the representations they learn are not directly
accessible from the outside. In this sense, we arrive at
a key aspect of neural networks and how they learn
called representational learning.

a[0] = x a[1] a[2] a[l] y = a[L]

Input Hidden Unit Output

Input Layer Hidden Layers Output Layer

^

x0

x1

x2

xN

...

∑ a

Logistic
Neuron

1 + e—x

1 _______

White Paper: A Tour of Modern AI and Its Commercial Applications 17

Representational Learning
Deep neural networks learn using a technique called
representational learning. This is a very important
concept along with non-linearity enabling the power of
deep learning. Early excursions into pattern recognition
depended upon hand-engineering features. Hand-
engineered features mean that a human decides a priori,
perhaps based upon some heuristic, which features
mattered in distinguishing one class from another.

For example, in distinguishing dog breeds, perhaps
poodles might be distinguished from other breeds
based upon the salient qualities of their fur. Alternatively,
perhaps the eye placement or spacing might provide a
significant clue to classifying these breeds. With hand
engineered features, the algorithm author—a human—
manually codes for the features that seem relevant. The
problem is that generally hand-engineering of features
just doesn’t work that well and regularly falls apart when
attempting to generalize. As humans, we simply don’t
have enough insight into building robust algorithmic
representations of classifiers. Our intuition alone is not
sufficient.

Representational or feature learning, on the other hand,
takes a much more clever approach: Let the AI model
itself learn the features that matter to it. This is a key
insight that cannot be overestimated in its importance
in the success of AI. We will explore some of the
examples of representational features that AlexNet (an
image classification network) learned by itself. In most
cases, the features that the AI model cares about have
little to no intuitive meaning. In some cases, there are
hints of human-level intuition in the features learned.
We don’t and shouldn’t care (except for theoretical
studies) what features our AI model cares about so
long as it can achieve high accuracy in its inference
task.

AlexNet is a deep neural network using a particular
variant of neural networks called convolutional
neural networks for performing image classification.
It competed and won in an international competition
in 2012 called the ImageNet Large Scale Visual
Recognition Challenge. Here’s the high-level
architecture of AlexNet.

White Paper: A Tour of Modern AI and Its Commercial Applications 18

Don’t worry about what these blocks and interconnections mean. They will all
become clear by the end of this series. Since we haven’t yet formally defined
what a neural network is or, for that matter, a deep neural network, this may
seem opaque, but it’s somewhat intuitive. Imagine a deep neural net as
comprising a series of abstract layers. Each layer may learn different features
relevant to the task at hand. The images below show the features learned by
AlexNet at various layers of the network. With this in mind, consider the images
below, which show a graphical representation of features that various layers of
AlexNet learned.

The earlier layers are presented first. Note, that the shallowest layer appears to
be learning abstract shapes and edges. As you delve into deeper layers, these
patterns become more and more complex. However, notice by the deeper
layers it is possible to make out the archetypes of image primitives that we in
fact, can recognize.

Whether our human visual perception system operates similarly is a fascinating
question. However, for our purposes in exploring AI, what matters most is an
appreciation of the power of representational learning - the idea that the model
itself learns the features that matter.

You may be asking yourself how representational learning can happen. How
can the model know what features to learn without having a human explicitly
tell it? The answer is somewhat subtle but lies in the process of training using
an optimization method called gradient descent that we shall explore in some
depth in later papers.

White Paper: A Tour of Modern AI and Its Commercial Applications 19

Gradient Descent, Backpropagation, Convexity and All That
Because with neural networks and deep learning we are
in a highly non-linear space, the closed-form solution
for finding the optimal parameters we saw with linear
regression won’t work anymore. Instead, neural networks
rely on numerical methods, specifically an algorithm called
gradient descent. Gradient descent is best imagined as
to how one might navigate in mountainous terrain to find
a valley. If the ground is sufficiently rugged, a navigator
would not be able to see globally in which direction the
valley lies. Instead, the navigator following a gradient
descent algorithm finds the local direction of steepest
descent and follows that for a small distance. The direction
of steepest descent can be applied by using the gradient
(derivative) operator in our high-dimensional parameter
space. After proceeding some distance, the navigator
retests for the local direction of steepest descent and
then proceeds in that direction. The process is repeated
indefinitely until some convergence criteria is obtained.

You may wonder how these gradients are computed in
practice in the high dimensional parameter space. This is
the province of the famous back propagation algorithm,
which we will discuss in depth in later installments.

With the great power that deep neural networks offer in
addressing non-linear models, they also bring with them
some potential pitfalls, among which is the issue of the
topology of the parameter space over which we seek to
find a minima for the loss function. The loss function itself
may be non-convex. While there is a precise mathematical
definition for convexity, what it means in this context is that
the weight space may be riddled with many local minima.
Therefore, instead of finding the global minimum, which
we seek, our gradient descent algorithm may, in fact, find
a local minima.

We will find that under certain reasonable assumptions,
the probability of non-convex functions decreases with
the dimensionality of the parameter space we work in.
Instead of local minima, we would expect to find saddle
points, which, although are not fatal, may significantly
slow the speed of convergence of the gradient
descent algorithm.

White Paper: A Tour of Modern AI and Its Commercial Applications 20

Our First Neural Network
After all this theory, let’s do something practical with it!
The goal here is to briefly illustrate building a deep neural
network to make predictions based upon the MNIST
data. While typically in production we might utilize a
framework such as TensorFlow or PyTorch for visualization
purposes, we are using Mathematica, which is a beautiful
environment for doing machine learning.

Here is a random sample from our MNIST training data:

Let’s build a simple architecture to perform this inference
based upon what we know so far. We will use a
feedforward neural network with a single hidden layer
for illustrative purposes. Here’s a block diagram of the
architecture of the proposed neural network:

Our simple architecture comprises a 784x1 input layer
followed by a sigmoid activation function. The 784x1
layer size is dictated by the input images for each digit,
which are of size 28x28 (pixels) and then flattened to a
one-dimensional vector of size 784x1. The input layer
is followed by a hidden layer of size 32x1, followed by
another sigmoid layer. Finally, our output is of size 10x1
(representing one of the ten digits we seek to infer).
The output layer is followed by something called a
softmax activation function, which operates to transform
our output into a probability distribution (we will discuss
the softmax in much more detail later). Finally, based
upon the probability distribution from the softmax layer,
the network produces a single value, which is the
predicted digit.

Upon training with the MNIST data set, we find our
loss function evolving as follows (the downward trend
indicates convergence).

White Paper: A Tour of Modern AI and Its Commercial Applications 21

Upon applying our trained model to our test set we end
up with 95% accuracy.

And, here were the worst classified examples:

The least certain examples were:

The top confusions were:
7 -> 9, 5 -> 8, 4 -> 9, 3 -> 8, 5 -> 6, 2 -> 7, 3 -> 7, 4 -> 6, 2 -> 3, 2 -> 6

The confusion matrix below shows correct and
misclassified examples:

At the end of the day, we would most likely use a
convolutional neural network for this task. We haven’t
discussed those yet but will do in later installments. For
now, here is a visualization of what the kernel of one
layer of a convolutional neural network applied to the
same problem learned:

White Paper: A Tour of Modern AI and Its Commercial Applications 22

Finally...

This has been a whirlwind high-level tour of some of the fundamental building blocks of AI and ML. We’ve covered a
lot of ground, albeit at a high level for now. We started with some history and quickly moved to define some of
the key terms in the field, including AI itself, machine learning, and its various incarnations as supervised,
unsupervised, or reinforcement. Then, we delved into a toy example of machine learning—linear
regression. From there, we learned about logistic regression and logistic neurons, the building
blocks of deep neural networks and deep learning. Finally, we started to explore at a high
level what neural networks are all about and illustrated building a simple feedforward
deep neural network in code.

Moving forward in subsequent white papers, we will explore in much
more detail the topics outlined here as well as many others, including
reinforcement learning. And, of course, once these building
blocks are in place, we will examine how AI and ML are
currently being applied to solve problems in the
commercial sphere. Equally important, we will
explore emerging opportunities to apply
ML/AI in new ways to tackle many new
challenges facing commercial
enterprise in the 21st century.
We hope you’ll stay
onboard for what will
be an exciting
journey.

Discover how you can transform your industrial
environment into an autonomous operation.
Visit www.rajant.com or contact a representative
to get started today.

© Copyright 2020 Rajant Corporation. All rights reserved.

Tel: 484.595.0233 | www.rajant.com

If it’s moving, it’s Rajant.
Industrial Wireless Networks Unleashed.

Finally....

