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Artificial Intelligence (AI) is making huge headlines around the world. But, what is the 
practical reality of AI as a game-changer in various industries for solving real-world problems? 
Before tackling these questions, it’s useful to gain some insight into what AI is all about.

Introduction

This white paper will begin by embarking on a tour of 
contemporary AI and how it is accomplished. Although 
AI and machine learning (ML) can be a highly technical 
subject involving lots of math and statistics, the aim here 
is to present these topics in a non-technical way, but at 
the same time provide a reasonable amount of breadth, 
depth, and rigor. While there will be some mathematical 
notation, this can be safely ignored if so desired.1

This first installment will present an overview of some of 
the key ideas of AI and ML at a high level. We will move 
rapidly through key aspects of the theory and by the end 
of this installment walk through building a simple deep 
neural network to recognize handwritten digits. Don’t 
worry if some of the ideas presented here are not entirely 
clear, as we won’t have time to delve into all of the details. 
In subsequent installments, we will flesh out the key 
ideas presented here in greater detail. Upon establishing 
a solid foundation of the mechanics of AI and machine 
learning, later installments will examine the promise of AI 
and specifically how the various incarnations of AI can be 
brought to bear in industry and commercial applications to 
solve hard problems in the world. More detailed aspects 
of the content will be presented later in this series of 
white papers on artificial intelligence. 

As we will see, the rudiments of AI and ML arise from 
probability and statistics. And while there are many ways 
to interpret how AI works, in fact, the “how” remains an 
open question that has become a focal area of research. 
Answers to this question may touch on some advanced 
topics such as convex function theory, Bayesian 

inference, information theory, and even aspects of 
statistical quantum mechanics such as spin glasses. 
These questions are not merely academic, for they 
underscore crucial elements of the successful practice 
of AI. Indeed, it is a vibrant field! But we needn’t 
complicate the discussion for now as we will get to all 
of that in due course.

We will approach this discussion by building up our 
understanding of AI from first principles. We will 
begin with linear regression, which may be thought 
of as the “Hello World” of AI. From there, we will turn 
to the classification problem and delve into an area 
called logistic regression, which is all about teaching 
a computer to classify an input as belonging to one 
class or another. If you think about it, classification is a 
vital part of the foundations of exhibited intelligence. 
An agent that can recognize and distinguish different 
entities in the world may be said to present some basic 
modicum of intelligence. 

Logistic regression will serve as a foundation for 
understanding neural networks and deep learning, 
which is one of the most popular techniques today 
in supervised learning. Along the way, we hope to 
highlight the essential aspects of these techniques. For 
example, we will learn the two most important aspects 
of neural networks and deep learning that has enabled 
this technique to be so successful in areas such as 
image classification, natural language processing, 
speech recognition, and speech synthesis.

1 The key areas of math that are helpful to understand AI are in no particular order, probability and statistics, linear algebra and basic univariate and multivariate calculus. However, 
reasonable intuition and understanding of AI concepts and the practice of building AI models is certainly achievable without much or any math. From a practitioner’s perspective,  
linear algebra is perhaps the most important area to have some familiarity with in order to make headway.
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It’s worth taking a brief detour into the history of AI as it 
is not only interesting but informative as to why modern 
AI techniques have enjoyed such success. Like many 
technical fields, it is riddled with dead ends, loose threads, 
and a trajectory characterized more like an aimless sailing 
excursion in shifting winds than a rocket launch. 

One myth that underlies much of the popular discussion 
of AI on the Web is that it’s new. It’s not—at least the basic 
theoretical knowledge for its execution isn’t. The success 
of AI as of late is a byproduct of decades-old theoretical 
results and modern cheap computer hardware that has 
emerged over the last ten years or so. The roots of 
machine learning and AI can be traced back at least to the 
1940s, and its evolution, like many fields, is characterized 
by a pattern of fits and starts. 

Perhaps the most realistic time frame to consider in 
tracking the birth of modern AI is the late 1950s and early 
1960s and the discovery of the perceptron by Rosenblatt. 
The perceptron is a learning model, which bears some 
resemblance to artificial neurons at the heart of deep 
neural networks today—with some key differences. 
However, progress in the field was stymied in the late ’60s 
largely due to some theoretical results published by Minksy 
(MIT) et al. that showed certain fundamental limitations 
of perceptrons. The Minksy work was misinterpreted as 
showing that neural networks were limited to linearly 
separable problems, which unfortunately killed much of the 
research in the area until the mid-1980s.

The theory of backpropagation, which arguably is the 
bread and butter of deep neural network training and 
which we shall explore in great detail later, was derived in 
the 1960s and implemented to run on a digital computer in 
1970 (by Linnainmaa) albeit not for neural network training. 
In 1974, the idea of applying backpropagation to neural 
networks was proposed by Paul Werbos in his doctoral 
dissertation. 

The field was resurrected to some extent in the mid-
1980s when Geoffrey Hinton (a “Godfather of AI”, 
pictured above) et al. rediscovered backpropagation 
and, through experimentation, showed that it could 
be applied to deep neural networks and utilized 
to automatically generate internal representations 
of features for learning. However, techniques for 
carrying out training were limited by the computational 
horsepower of the day. This remained largely true up 
through the 2000s. 

However, if backpropagation provided the kindling, 
the emergence of affordable and more powerful GPUs 
in recent years served as the spark for many of the 
modern advances we’ve seen in AI and deep learning, 
especially over the last ten years. Arguably, it was this 
explosive combination of the theoretical underpinnings 
of backpropagation and the access to fast parallel 
computation via GPUs that set the AI field alight. 

But, there’s more than this. To foreshadow a bit the 
story of why modern AI has proved so successful, 
there are two salient features at play. First, rather 
than relying on hand-engineered features, modern 
AI and deep learning models learn their features. 
This, as we shall explore later, is the province of 
representational learning, a subtle but brilliant kernel 
of what makes AI tick. Second, deep neural networks 
are inherently non-linear, but more importantly, can 
learn non-linear representations without facing the 
intractable limitations inherent in working with analytic 
representations of non-linear mathematics. We shall 
see that these two attributes—representational 
learning and non-linearity—are the driving forces in 
the remarkable power and success for which recent AI 
initiatives have garnered attention.

Before delving into the details, a bit of nomenclature 
is in order.

A Brief Digression on the History of Artificial Intelligence 
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A Taxonomy of AI 
The terms AI, machine learning, deep learning, neural networks, and many 
others are weaving their way into public consciousness. Often these terms are 
used interchangeably. But, there are meaningful differences, which are  
essential in understanding the potential for commercial AI applications.

Intelligence is in the Eye of the Beholder 
The term “artificial intelligence” was coined by computer scientist John 
McCarthy in 1956 who also developed the famous LISP programming language. 
Although there is no universal definition of the term, a reasonable description 
is any machine behavior that appears intelligent or displays what humans 
would call intelligence. To this end, Alan Turing, subject of the famous film “The 
Imitation Game”, devised a test called the Turing test to determine whether a 
machine exhibits intelligent behavior.

Machine Learning 
The term “machine learning” was coined in 1959 by computer scientist Arthur 
Samuel. While “machine learning” does not have a precise formalized definition, 
a working definition is algorithms that perform some type of pattern detection 
typically accomplished using statistical techniques or statistical inference. There 
is a divergence of opinion on whether “machine learning” itself is a subfield of 
AI, and the history of both fields has taken many twists and turns and at various 
points have intertwined.2  

But, where is the “learning” in ML? In short, learning refers to a machine’s 
ability to refine or improve its ability to perform a specific action. Learning 
may be further classified as supervised learning, unsupervised learning and 
reinforcement learning. Let’s explore these in turn.

2 In general, the AI camp has historically focused more on symbolic vs. statistical techniques. Indeed AI in its purest form focused on symbolic, knowledge representation and logical 
inference and machine learning is predominantly concerned with pattern recognition primarily using statistical approaches. Indeed, machine learning might be aptly called statistical 
inference.
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Supervised Learning 
Human beings often learn from example. For example, 
they may learn what the word “red” means by observing 
those objects in the world that have particular visual 
characteristics are all called “red”. After observing many 
examples, a person may arrive at a general understanding 
of what “red” means. In short, there is a consensus on what 
“red” means for which virtually everyone can agree and 
which is codified in empirical examples in the world.

Supervised machine learning operates superficially in the 
same way. During a training phase, an algorithm processes 
a set of labeled training examples to perform a learning 
algorithm. Each training example comprises an input 
and an output and represents what is referred to as the 
“ground truth”. The ground truth operates as an instructive 
example gleaned empirically and represents a correct 
mapping from one particular input to an associated output. 
The product of the training phase is called the model and 
generally comprises a set of abstract numbers (more on 
this later), which are called the parameters of the model. 
Once the training is completed, the model may be used to 
perform inference or prediction (also called the test phase) 
on examples that were not observed during training. The 
hope is that the model is sufficiently general that it can 
make inferences about examples it has never observed 
previously. 

In any case, for all practical purposes, the terms AI 
and machine learning these days are used almost 
interchangeably despite their historical differences.

However, supervised learning operates intrinsically 
at the statistical level. The set of training examples 
defines some probability distribution from which a 
statistical model is learned (more on this later). 

So, in short, a supervised learning algorithm analyzes 
the training data (examples) and generates an 
inferred function, which can be used for mapping 
new examples. An optimal scenario will allow for the 
algorithm to correctly determine the class labels for 
unseen instances. This requires the learning algorithm 
to generalize from the training data to unseen 
situations in a “reasonable” way.

Neural networks and deep learning are two examples 
of supervised learning techniques that have recently 
received much attention and fanfare in the media. 
We will explore neural networks and deep learning in 
another white paper. 

Unsupervised Learning 
Although people often learn in a supervised way, in 
most instances, learning occurs without any reference 
to specific labels or examples. For example, a person 
may abstract a general principle that may be applied 
by analogy to many scenarios. And, this may happen 
without any specific data indicating such a relationship. 
In some sense, the brain is wired to learn. Principal 
component analysis (“PCA”) and clustering are 
examples of unsupervised learning that we will explore 
later in this series.

3 The term “test” phase although used heavily in the literature is somewhat misleading. It’s really part of the training phase to evaluate how well the model generalizes and in fact 
comprises. The hope is that the model is sufficiently general that it can reliably perform inference on inputs outside of the training set. We will therefore use the term inference or 
prediction to distinguish from the training phase. 
4 Whether models can generalize is an involved topic that relates to two types of conditions, underfitting and overfitting. This in turn relates to what is called the bias variance 
tradeoff. We won’t explore these aspects in this white paper, but they are very important and will be examined in great detail later. 
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Reinforcement Learning  

5 The estimated number of possible board configuration is 10¹²º in chess which is astronomical but Go has around 10¹⁷⁴. After the first two moves of a Chess game, there are 400 
possible next moves. In Go, there are close to 130,000.

Reinforcement Learning (“RL”) and deep reinforcement learning are very hot 
fields that are making their way into commercial applications. It is particularly 
applicable to situations where an agent must interact with its environment such 
as in robotics or autonomous driving. As a fun illustration of RL, it has been 
applied to teach machines how to play classic arcade video games that can 
decimate human opponents.

For those who are familiar with the astounding success of AlphaGo and 
AlphaGoZero, deep reinforcement learning is the machine learning technique 
behind that technology. AlphaGo and AlphaGoZero have received quite a bit of 
publicity after defeating top-ranked professional Go players in the world; a feat 
considered the holy grail for employing AI to strategic gaming.5  

A hallmark of reinforcement learning that distinguishes it from other types 
of learning is that it uses training information that evaluates actions taken 
rather than instructs by giving correct actions. Evaluative feedback depends 
on the action taken typically in terms of some reward based on the action. 
Supervised learning, on the other hand, relies on instructive feedback, which 
is characterized by a correct action to take independent of the action actually 
taken. In short, evaluative feedback, which is used to train reinforcement 
learning systems, depends on the action taken. In contrast, instructive feedback, 
which is used to train supervised learning systems, is independent of the action 
taken.
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Before diving into our first high-level topic of supervised learning, we will briefly 
discuss the fuel of ML and AI - data. With machine learning, there is no such 
thing as too much data. However, no data, too little data, or lack of good data 
can be a non-starter for any machine learning initiative. 

As food for thought, we highlight two toy datasets that will be useful to keep in 
mind when reading this material. The first by Bishop and James relates to the 
non-invasive measurement of the proportions of oil, water, and gas in the North 
Sea oil transfer pipelines.6 

The second is the MNIST dataset of handwritten digits. This dataset consists of 
handwritten digits. We seek to train a machine to recognize these handwritten 
digits. Here is an example drawn from the dataset:

Data...Data...Data 

6 This image was taken from Pattern Recognition and Machine Learning by Christopher M. Bishop (1993).

Stratified

Homogeneous

Annular

Oil

Water

Gas

Mix



White Paper: A Tour of Modern AI and Its Commercial Applications 9

Linear Regression—the Hello World of Supervised Machine Learning 
Anyone who has taken a basic statistics class has already 
had a taste of the foundations of machine learning in the 
form of linear regression. In some sense, linear regression 
can be viewed as the most basic form of supervised 
learning. Linear regression is a technique for inferring a 
linear relationship or mapping between two sets of data, 
an independent variable (input) and a dependent variable 
(output). The input variables are often described as the 
features, while the output variable is often called the 
target. 

A good toy problem to which linear regression might be 
applied is predicting housing prices. Suppose we desire 
to predict the price (target) of a particular house based on 
various features, including such things as location, square 
footage, number of bedrooms, etc. A reasonable model 
is to assume that the price of the house is a function of 
some linear combination of the features. In other words, 
let’s assume our target (the housing price) to be modeled 
as a linear function of three features—location, square 
footage, and number of bedrooms:

price = w1 * location + w2 * footage + w1 * bedrooms

The variables w1 w2 and w3 are called weights. These 
weights express the relative importance of each of the 
features in predicting a housing price. 

But how does machine learning fit into this picture? In 
short, our first example of machine learning is learning 

these weights based upon some observations. Let’s 
take the housing prices example, generalize it a bit, 
and gain a glimpse of what this learning process 
looks like. Let’s generalize our problem from three 
features to an arbitrary number of input features. The 
simplest model for linear7 regression is simply a linear 
combination of input features as follows:

f (x,w) = w0
 + x1w1 + x2w2 + ... + xnwn

8

The relationship can be expressed compactly in vector 
form as: 

f (x) = wTx

where w is a vector of parameters and x is a vector of 
input features9. Technically, the parameters are a set of 
weights and a bias parameter. The meaning of these 
terms will be explored in subsequent papers.

Let’s unpack these relationships:

●  x is a vector holding the input features to be  
   processed by the linear regression model.

●  f (x) is the output of the linear regression model. It is  
   the number we are trying to predict.

●  w is a vector of parameters comprising weights and  
   a bias. 

7 The term “linear” here can be intuitively thought of in this context as lying on a line. Of course, in this example, we are in n dimensions and thus the points lie on a hyperplane of 
dimension N-1 in N dimensions. The term linear though has a more formal mathematical definition that makes linearity very powerful, which we won’t discuss here, but perhaps will 
do so later. 
8 Note a key point is that the model is linear in the parameters w. Later, we will find we can model quadratic or higher terms by choosing a set of basis functions. However, these 
models will still be linear in the parameters. 
9 Note, we can set the input feature x_0 = 1 so that w_0 can be conveniently included in this vector.
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Higher Order Basis Functions
So far, we’ve looked at linear regression on the inputs 
themselves. This amounts to assuming ambient basis 
functions which are the standard Euclidean basis 
vectors:

ei = δij 

This limits the expressiveness of the model to capture 
higher-order features. One way to address this is to 
project the input into a higher dimensional space using 
a set of basis functions. For example, the scalar input x 
could be projected onto the powers of x as follows:

Φ(x) - (1, x, x2, x3, ...)T

The model is still linear in the parameters w so long as 
the basis functions are fixed and, therefore, analytically 
tractable.

j
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Model and Observation

Let’s assume now that we have some data (our first 
dataset) of housing prices and a corresponding vector of 
features associated with that housing price. We can call 
this set of data our observations. But, more specifically, 
it is labeled training data in that we know the actual or 
correct or instructive answer for the housing price based 
on the input features. This is often referred to as the 
ground truth. We will see how these training examples 
serve as instructive feedback to train our model (in our 
case the determination of the parameters w0 w1 w2 ... wn).

However, before we consider learning, let’s consider 
the reality of how we obtain these observations in the 
first place. The plot below shows an example set of 
observations for a linear regression model in which we 
have a single input feature along the x-axis. The target 
value (output) is along the y-axis. You could imagine this 
as our housing price predictor in which we considered 
only a single input feature, which in this case might be (for 
example) the income of housing buyers (in $1000s) along 
the x-axis and target price (in $1000s) along the y-axis. 
This isn’t a particularly realistic or useful example, but it’s 
fine for instruction purposes.

Note something interesting about the plot above. The 
data points don’t all lie on a straight line! Why is this? The 
answer is that each observation will be corrupted and 
thereby perturbed by some noise. We use the term noise 
to generically capture any error in our observations. It 

may stem from measurement error, physical noise in 
a measurement apparatus, human error, and a host of 
other sources that introduce some randomness into 
the mix. Thereby, we can model this noise as a random 
variable ε. As we will learn later, the noise term ε will 
be characterized by a probability density function 
(typically Gaussian) and temporal correlation with noise 
at other time instants. Usually, we assume the noise is 
uncorrelated across time, and we typically model this 
noise as a Gaussian random variable characterized 
by its mean and variance. With this new insight, our 
observations y can be expressed as follows:

y = f (x) + ε

However, we are interested in f (x), and specifically, 
the parameters w. In essence, the linear regression 
problem boils down to the problem of finding the 
optimal parameters w for a linear model f (x) based 
upon observations that have been perturbed by some 
random noise ε.

How do we find these parameters w? This process is 
what we call learning. And we shall see that for linear 
regression, there is a myriad of techniques for finding 
the parameters, including a closed-form solution 
called maximum likelihood least squares, via Bayesian 
methods and optimization methods such as gradient 
descent. While we shall explore all of these at some 
level, gradient descent is the most relevant for our 
discussion as it is more or less the only game in town 
when considering non-linear models such as deep 
neural networks. We will, therefore spend considerable 
time exploring how it works (but not in this first paper).

For now, let’s simply show the results for the closed-
form maximum likelihood least squares closed solution, 
which is possible because the problem is linear (this 
result will be derived in a later paper). 
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Suppose we have a linear regression model and wish to 
evaluate how well it performs. One straightforward way 
to do this is to compare its predictions with the ground 
truth—our observations. Of course, our observations are 
corrupted by noise, but that’s the whole point. We wish to 
find the model that minimizes these errors in some way.

We can define what is called the expected loss as follows:

E[L] = ∫ ∫ L(t, f (x))p(x, t)dx dt

Here, t = y (x) for notational convenience. The function L   
is called the loss function. A first-order function won’t do 
as we might expect 0 if the error is distributed uniformly 
around 0. So, instead, typically a second order loss 
function is defined:

L(t, f (x)) = (t — f(x))2

f(x) is the estimate for the model, i.e., the set of 
parameters that best estimate the true model. In other 
words, the best-fit line in the plot above represents the 
parameters for f (x) that minimize the total loss function 
overall observations.

Maximum Likelihood, Least Squares, and Loss Functions

Starting with the likelihood probability distribution:

p(y|X, w, β)

We can then find the extremum (maximum values) for 
this probability distribution by taking the gradient with 
respect to the parameters w. We will see later that 
this maximization is equivalent to minimizing an error 
or cost function, which is typically a quadratic function 
of the estimated and target values for the model. This 
method is also referred to as the least-squares solution. 
After some manipulation, we will find:

w = (ΦTΦ)—1 ΦT y

Where Φ is a matrix of the data set vectors, which may 
be mapped to a higher dimensional space using a set 
of non-linear basis vectors (more on this later). 

Thus, the line in the above plot for a simple 1-D 
problem, represents the maximum likelihood least 
squares for the dataset shown—i.e., it is the best fit for 
the data set shown. 

The image below sums up much of what we’ve 
discussed so far re: linear regression. 

^

^

^

^
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Bias and Variance
Before moving on, it is essential to discuss a very important 
topic that will continue to play a major theme in our AI and ML 
investigations. The topic is overfitting and underfitting. The 
capacity of a model refers to its ability to fit a wide variety of 
functions. Models with low capacity may fail to fit the training 
set resulting in a situation called underfitting. Models with 
high capacity can overfit by learning properties of the test set 
that are undesirable such as noise. 

The capacity of a model is determined by the number of 
parameters in relation to the dataset to be modeled. An 
overfitted model comprises more parameters than are 
justified by the data. Conversely, underfitting occurs when the 
number of parameters is insufficient to capture the data being 
modeled. An example would be attempting to fit a linear 
model to non-linear data.

We will learn later that overfitting is an artifact of maximum 
likelihood estimation and does not arise in Bayesian 
approaches. From a frequentist perspective, a relation called 
the bias-variance tradeoff arises. We won’t explore it in any 
depth here. However, we will write down the equations that 
define this relationship and discuss their qualitative meaning. 
Later, we will derive this relation. Here is the bias/variance 
tradeoff:

ED[(y — f(x; D))2] = (BiasD[f(x; D)])2 + VarD [f(x; D)] + σ2

where

BiasD[f(x; D)] = ED[f(x; D)] — f (x)

VarD[f(x; D)] = ED[f(x; D)2] — ED[ f(x; D)]2

σ2 is the squared variance of the noise ε. 

The squared bias, represents the extent to which the 
average prediction over all datasets differs from the desired 
regression function. 

The variance measures the extent to which the solutions for 
individual data sets vary around their average. Hence, this 
measures the extent to which the function y(x; D) is sensitive 
to the particular choice of data set.

The “tradeoff” relates to the fact that models with a lower bias 
have a higher variance and vice versa. 

^ ^ ^

^ ^

^ ^ ^
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Logistic Regression—the Art of Classification 
We’ve seen that linear regression is a very powerful 
technique for modeling relationships between input 
features and inference such as, for example, the 
dependence of housing prices upon various variables 
such as location, square footage, number of bedrooms, 
etc. While linear regression is great for predicting the 
value of a function based upon a set of input features, 
what if we wish to predict whether some entity in the 
world belongs to a particular class or type? 

For example, suppose we have a set of photos of dogs 
and wish to build a model to predict the breed of dog 
from a photo. In this case, we may have a range of 
classes such as, “German Shepard”, “Labrador”, “Poodle”, 
etc. The input to our model might be a digital image 
comprising individual pixels, and the output would be a 
variable indicating the particular dog breed in the photo. 
For example, perhaps using our example “German 
Shepard” is assigned to the class 1, “Labrador” is assigned 
to the class 2 and “Poodle” is assigned to the class 3. In 
other words, we wish to build a model that can learn how 
to distinguish these different breeds of dogs based only 
upon an input photograph.

Logistic regression is a statistical technique to model the 
probability of an input belonging to a particular class. 
While in linear regression, the model prediction f(x) was a 
linear function of the input parameters w:

f(x) = wTx

In logistic regression, we seek to predict the probability 
of an input belonging to a particular class. Therefore, our 

output values range from 0-1. In other words, the output 
of our model is in fact a probability. In order to achieve 
this, we can build off the linear regression model by 
simply wrapping that model in a non-linear function with 
range 0-1 like so10:

f(x) = g(wTx)

This non-linear function g is often referred to as an 
activation function of which there are several commonly 
used variants, including the sigmoid function, 
hyperbolic tangent, and ReLu (“Rectified Linear Unit”). 
We will explore these different activation functions later. 
For now, the sigmoid function is expressed as:

g(x) = 

Here’s what it looks like:

Then, we will see later that the activation function is 
essential to the non-linear modeling characteristic of 

10 Sometimes people refer to this activation as a “squashing function” as it does just that. It squashes the range to be between 0 and 1.
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deep neural networks, which among other things, makes 
them so powerful. 

The sigmoid function is a cumulative distribution function 
(“CDF”).  The associated probability distribution function 
(“PDF”) may be found by taking its derivative and looks 
like this:

with analytic form:

f (x) =

Since we now know how to model our classification 
problem as a probability, we would like our machine 
learning algorithm to generate a prediction:

p(Ck|x)

This is the conditional probability of class k given x. In 
other words, if the input is k, what is the probability that it 
belongs to class k.

Here is an example of a data set drawn from a probability 
distribution to which a classifier has been applied.

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

You may wonder what type of loss function we might 
employ for logistic regression. Typically, classifier 
networks utilize something called cross-entropy loss. 
The cross-entropy effectively measures the “distance” 
between two probability distributions. This makes 
sense, as our output is indeed a probability distribution. 
In other words, cross-entropy loss measures the 
distance between the probability distribution of our 
training data and the probability distribution generated 
by our network predictions. For a binary classifier, the 
cross-entropy loss can be expressed as: 

H(p,q) = — ∑pi log qi = —y log y — (1 — y) log (1 — y) 

Finally, we wish our output to in fact resemble a 
probability distribution. How is this accomplished? For 
this, an activation function called the softmax activation 
function is employed. It effectively squashes our 
arbitrary output into a card-carrying PDF.
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From Logistic Regression to Deep Neural Networks
We will soon explore the deep learning “zoo” housing 
many species including feedforward neural networks, 
convolutional neural networks, recurrent neural networks, 
LSTMs, GRUs, autoencoders and many others. Each 
species plays a unique role in attacking particular 
problems and applications, but the development of a 
model architecture is at least as much art as it is science. 

A logistic neuron is the building block of deep neural 
networks. Here it is in diagrammatic form: 

z = w0x0 + w1x1 + w2x2 + ... + wnxn

a = σ (z)

σ (z) = 

There’s nothing new here. The logistic neuron simply 
encapsulates logistic regression in a single unit. And, in 
some sense, a deep neural network is constructed by 
weaving together many layers of these logistic neurons. 

Here’s the basic architecture of a deep neural network 
called a feedforward neural network, which couples 
together many logistic neurons arranged in layers. With 
this approach, we end up with an architecture called a 
feedforward deep neural network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The feedforward network consists of an input layer, 
an arbitrary number of hidden layers, and an output 
layer. Note that each layer is typically followed by a 
non-linear activation function, such as the sigmoid we 
discussed earlier. These activation functions are what 
imbues non-linearity into our network, which is so 
highly desired. Indeed, the real world, which we seek 
to model is highly non-linear.

The hidden layers are hidden in the sense that they 
and the representations they learn are not directly 
accessible from the outside. In this sense, we arrive at 
a key aspect of neural networks and how they learn 
called representational learning. 
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Representational Learning
Deep neural networks learn using a technique called 
representational learning. This is a very important 
concept along with non-linearity enabling the power of 
deep learning. Early excursions into pattern recognition 
depended upon hand-engineering features. Hand-
engineered features mean that a human decides a priori, 
perhaps based upon some heuristic, which features 
mattered in distinguishing one class from another. 

For example, in distinguishing dog breeds, perhaps 
poodles might be distinguished from other breeds 
based upon the salient qualities of their fur. Alternatively, 
perhaps the eye placement or spacing might provide a 
significant clue to classifying these breeds. With hand 
engineered features, the algorithm author—a human—
manually codes for the features that seem relevant. The 
problem is that generally hand-engineering of features 
just doesn’t work that well and regularly falls apart when 
attempting to generalize. As humans, we simply don’t 
have enough insight into building robust algorithmic 
representations of classifiers. Our intuition alone is not 
sufficient. 

Representational or feature learning, on the other hand, 
takes a much more clever approach: Let the AI model 
itself learn the features that matter to it. This is a key 
insight that cannot be overestimated in its importance 
in the success of AI. We will explore some of the 
examples of representational features that AlexNet (an 
image classification network) learned by itself. In most 
cases, the features that the AI model cares about have 
little to no intuitive meaning. In some cases, there are 
hints of human-level intuition in the features learned. 
We don’t and shouldn’t care (except for theoretical 
studies) what features our AI model cares about so 
long as it can achieve high accuracy in its inference 
task. 

AlexNet is a deep neural network using a particular 
variant of neural networks called convolutional 
neural networks for performing image classification. 
It competed and won in an international competition 
in 2012 called the ImageNet Large Scale Visual 
Recognition Challenge. Here’s the high-level 
architecture of AlexNet. 
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Don’t worry about what these blocks and interconnections mean. They will all 
become clear by the end of this series. Since we haven’t yet formally defined 
what a neural network is or, for that matter, a deep neural network, this may 
seem opaque, but it’s somewhat intuitive. Imagine a deep neural net as 
comprising a series of abstract layers. Each layer may learn different features 
relevant to the task at hand. The images below show the features learned by 
AlexNet at various layers of the network. With this in mind, consider the images 
below, which show a graphical representation of features that various layers of 
AlexNet learned.

The earlier layers are presented first. Note, that the shallowest layer appears to 
be learning abstract shapes and edges. As you delve into deeper layers, these 
patterns become more and more complex. However, notice by the deeper 
layers it is possible to make out the archetypes of image primitives that we in 
fact, can recognize. 

Whether our human visual perception system operates similarly is a fascinating 
question. However, for our purposes in exploring AI, what matters most is an 
appreciation of the power of representational learning - the idea that the model 
itself learns the features that matter. 

You may be asking yourself how representational learning can happen. How 
can the model know what features to learn without having a human explicitly 
tell it? The answer is somewhat subtle but lies in the process of training using 
an optimization method called gradient descent that we shall explore in some 
depth in later papers.
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Gradient Descent, Backpropagation, Convexity and All That
Because with neural networks and deep learning we are 
in a highly non-linear space, the closed-form solution 
for finding the optimal parameters we saw with linear 
regression won’t work anymore. Instead, neural networks 
rely on numerical methods, specifically an algorithm called 
gradient descent. Gradient descent is best imagined as 
to how one might navigate in mountainous terrain to find 
a valley. If the ground is sufficiently rugged, a navigator 
would not be able to see globally in which direction the 
valley lies. Instead, the navigator following a gradient 
descent algorithm finds the local direction of steepest 
descent and follows that for a small distance. The direction 
of steepest descent can be applied by using the gradient 
(derivative) operator in our high-dimensional parameter 
space. After proceeding some distance, the navigator 
retests for the local direction of steepest descent and 
then proceeds in that direction. The process is repeated 
indefinitely until some convergence criteria is obtained.

You may wonder how these gradients are computed in 
practice in the high dimensional parameter space. This is 
the province of the famous back propagation algorithm, 
which we will discuss in depth in later installments.

With the great power that deep neural networks offer in 
addressing non-linear models, they also bring with them 
some potential pitfalls, among which is the issue of the 
topology of the parameter space over which we seek to 
find a minima for the loss function. The loss function itself 
may be non-convex. While there is a precise mathematical 
definition for convexity, what it means in this context is that 
the weight space may be riddled with many local minima. 
Therefore, instead of finding the global minimum, which 
we seek, our gradient descent algorithm may, in fact, find 
a local minima. 

We will find that under certain reasonable assumptions, 
the probability of non-convex functions decreases with 
the dimensionality of the parameter space we work in. 
Instead of local minima, we would expect to find saddle 
points, which, although are not fatal, may significantly 
slow the speed of convergence of the gradient 
descent algorithm.
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Our First Neural Network
After all this theory, let’s do something practical with it! 
The goal here is to briefly illustrate building a deep neural 
network to make predictions based upon the MNIST 
data. While typically in production we might utilize a 
framework such as TensorFlow or PyTorch for visualization 
purposes, we are using Mathematica, which is a beautiful 
environment for doing machine learning.

Here is a random sample from our MNIST training data:

 

Let’s build a simple architecture to perform this inference 
based upon what we know so far. We will use a 
feedforward neural network with a single hidden layer 
for illustrative purposes. Here’s a block diagram of the 
architecture of the proposed neural network:

Our simple architecture comprises a 784x1 input layer 
followed by a sigmoid activation function. The 784x1 
layer size is dictated by the input images for each digit, 
which are of size 28x28 (pixels) and then flattened to a 
one-dimensional vector of size 784x1. The input layer 
is followed by a hidden layer of size 32x1, followed by 
another sigmoid layer. Finally, our output is of size 10x1 
(representing one of the ten digits we seek to infer). 
The output layer is followed by something called a 
softmax activation function, which operates to transform 
our output into a probability distribution (we will discuss 
the softmax in much more detail later). Finally, based 
upon the probability distribution from the softmax layer, 
the network produces a single value, which is the 
predicted digit. 

Upon training with the MNIST data set, we find our 
loss function evolving as follows (the downward trend 
indicates convergence). 
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Upon applying our trained model to our test set we end 
up with 95% accuracy. 

And, here were the worst classified examples:  

The least certain examples were:

The top confusions were: 
7 -> 9, 5 -> 8, 4 -> 9, 3 -> 8, 5 -> 6, 2 -> 7, 3 -> 7, 4 -> 6, 2 -> 3, 2 -> 6

The confusion matrix below shows correct and 
misclassified examples:

At the end of the day, we would most likely use a 
convolutional neural network for this task. We haven’t 
discussed those yet but will do in later installments. For 
now, here is a visualization of what the kernel of one 
layer of a convolutional neural network applied to the 
same problem learned:
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Finally...

This has been a whirlwind high-level tour of some of the fundamental building blocks of AI and ML. We’ve covered a 
lot of ground, albeit at a high level for now. We started with some history and quickly moved to define some of 
the key terms in the field, including AI itself, machine learning, and its various incarnations as supervised, 
unsupervised, or reinforcement. Then, we delved into a toy example of machine learning—linear 
regression. From there, we learned about logistic regression and logistic neurons, the building 
blocks of deep neural networks and deep learning. Finally, we started to explore at a high 
level what neural networks are all about and illustrated building a simple feedforward 
deep neural network in code.

Moving forward in subsequent white papers, we will explore in much 
more detail the topics outlined here as well as many others, including 
reinforcement learning. And, of course, once these building 
blocks are in place, we will examine how AI and ML are 
currently being applied to solve problems in the 
commercial sphere. Equally important, we will 
explore emerging opportunities to apply 
ML/AI in new ways to tackle many new 
challenges facing commercial 
enterprise in the 21st century. 
We hope you’ll stay 
onboard for what will 
be an exciting 
journey.
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